Магнитный поток
Известно, что пропускание тока через проводник сопровождается формированием электромагнитного поля. На этом принципе основана работа динамиков, запорных устройств, приводов реле, других приспособлений. Изменением параметров источника питания получают необходимые силовые усилия для перемещения (удержания) совмещенных деталей, обладающих ферромагнитными свойствами.
Однако действительно и обратное утверждение. Если между полюсами постоянного магнита перемещать рамку из проводящего материала по соответствующему замкнутому контуру, начнется перемещение заряженных частиц. Подключив соответствующие приборы, можно регистрировать изменение тока (напряжения). В ходе элементарного эксперимента можно выяснить увеличение эффекта в следующих ситуациях:
- перпендикулярное расположение проводника/силовых линий;
- ускорение перемещений.
На картинке выше показано, как определять направление тока в проводнике с помощью простого правила.
Взаимоиндукция
При расположении двух катушек рядом в них наблюдается ЭДС взаимоиндукции, которая определяется конфигурацией двух схем и их взаимной ориентацией. При возрастании разделения цепей значение взаимоиндуктивности уменьшается, поскольку наблюдается уменьшение общего для двух катушек магнитного потока.
Рассмотрим детально процесс возникновения взаимоиндукции. Есть две катушки, по проводу одной с N1 витков течет ток I1, которым создается магнитный поток и идет через вторую катушку с N2 числом витков.
Значение взаимоиндуктивности второй катушки в отношении первой:
М21 = (N2 x F21)/I1.
Значение магнитного потока:
Ф21 = (М21/N2) x I1.
Индуцированная ЭДС вычисляется по формуле:
Е2 = — N2 x dФ21/dt = — M21x dI1/dt.
В первой катушке значение индуцируемой ЭДС:
Е1 = — M12 x dI2/dt.
Важно отметить, что электродвижущая сила, спровоцированная взаимоиндукцией в одной из катушек, в любом случае прямо пропорциональна изменению электрического тока в другой катушке. Тогда взаимоиндуктивность считается равной:
Тогда взаимоиндуктивность считается равной:
Вследствие этого , E1 = — M x dI2/dt и E2 = M x dI1/dt. М = К √ (L1 x L2), где К является коэффициентом связи между двумя значениями инжуктивности.
Взаимоиндукция широко используется в трансформаторах, которые дают возможность менять значения переменного электротока. Прибор представляет собой пару катушек, которые намотаны на общий сердечник. Ток в первой катушке формирует изменяющийся магнитный поток в магнитопроводе и ток во второй катушке. При меньшем числе витков в первой катушке, чем во второй, возрастает напряжение, и соответственно при большем количестве витков в первой обмотке напряжение снижается.
Помимо генерирования и трансформации электрической энергии, явление магнитной индукции используется в прочих приборах. К примеру, в магнитных левитационных поездах, движущихся без непосредственного контакта с током в рельсах, а на пару сантиметров выше по причине электромагнитного отталкивания.
В этой публикации рассмотрены основные термины, законы и методики вычисления ЭДС магнитной индукции. С помощью представленных ниже материалов можно самостоятельно определить силу тока во взаимосвязанных контурах, изменение напряжения в типовых трансформаторах. Эти сведения пригодятся для решения различных электротехнических задач.
Плагиат или нет?
Ещё в 1832-1833-х годах Эмилий Христианович Ленц обратил внимание на то, что проводимость проводника сильно зависит от его нагревания, это осложняло расчёты электрических цепей, так как не представлялось возможным вычислить зависимость тока от теплоты, которую он выделяет
Рис. 3. Опыт Ленца
Ленц сконструировал специальный прибор-сосуд, служивший для измерения количества тепла, выделявшегося в проволоке. В сосуд учёный заливал разбавленный спирт (спирт обладает меньшей электропроводностью, чем вода, которую использовал в своих опытах Джеймс Джоуль). В раствор спирта помещалась платиновая проволока, через которую пропускался электрический ток (см. Рис. 3). Была произведена большая серия опытов, в которых Ленц замерял время, затраченное на нагревание раствора на . Получив достаточное количество убедительных данных, в 1843 году учёный опубликовал закон: «нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока»
Однако аналогичный закон уже был опубликован Джоулем в 1841 году, но Ленц вполне обоснованно обратил внимание на то, что англичанин провёл свои эксперименты с большим количеством погрешностей. Именно поэтому закон о тепловом действии тока был назван в честь двух выдающихся учёных
Первый генератор
В 1831 году ученый, чтобы наглядно продемонстрировать процесс преобразования механической энергии в электрическую, построил генератор Фарадея. Этот прибор не имел практического значения, но наглядно показывал волшебство возникновения электрического тока.
Диск Фарадея представлял собой устройство, напоминающее примитивный генератор. В этой конструкции магнитное поле направлялось вдоль оси вращения, а контур оставлялся неподвижен. Удивление наблюдателей вызывало то обстоятельство, что вращение магнита вместе с диском приводило к появлению электродвижущей силы в неподвижной цепи. Это явление было названо парадоксом Фарадея. Данное противоречие разрешилось уже после смерти ученого, когда был открыт электрон, который ведет себя и как заряд, и как частица.
Взаимодействие магнита с контуром
В качестве наглядного примера взаимодействия магнита и контура в сделанную из медного провода катушку помещают магнит. Если магнит медленно вставлять внутрь катушки, происходит постепенное увеличение пересекающего ее витки создаваемого магнитом потока. Появляющееся вследствие такой манипуляции упорядоченное движение частиц в катушке будет направлено по часовой стрелке, создавая собственное магнитное поле, ослабляющее поле магнита, отталкивая его тем самым от катушки.
Если магнит отдаляют от контура, его поток уменьшается, а заряженные частицы начинают двигаться против часовой стрелки, вследствие чего возникающая совокупность силовых магнитных линий будет притягивать магнит.
Законы Фарадея и Ленца
Законы Фарадея и Ленца отображают закономерности возникновения электромагнитной индукции.
Фарадей выявил, что магнитные эффекты появляются в результате изменения магнитного потока во времени. В момент пересечения проводника переменным магнитным током, в нем возникает электродвижущая сила, которая приводит к возникновению электрического тока. Генерировать ток может как постоянный магнит, так и электромагнит.
Ученый определил, что интенсивность тока возрастает при быстром изменении количества силовых линий, которые пересекают контур. То есть ЭДС электромагнитной индукции пребывает в прямой зависимости от скорости магнитного потока.
Согласно закону Фарадея, формулы ЭДС индукции определяются следующим образом:
Знак «минус» указывает на взаимосвязь между полярностью индуцированной ЭДС, направлением потока и изменяющейся скоростью.
https://youtube.com/watch?v=mp7C6S2gawQ
Согласно закону Ленца, можно охарактеризовать электродвижущую силу в зависимости от ее направленности. Любое изменение магнитного потока в катушке приводит к появлению ЭДС индукции, причем при быстром изменении наблюдается возрастающая ЭДС.
Если катушка, где есть ЭДС индукции, имеет замыкание на внешнюю цепь, тогда по ней течет индукционный ток, вследствие чего вокруг проводника появляется магнитное поле и катушка приобретает свойства соленоида. В результате вокруг катушки формируется свое магнитное поле.
Э.Х. Ленц установил закономерность, согласно которой определяется направление индукционного тока в катушке и ЭДС индукции. Закон гласит, что ЭДС индукции в катушке при изменении магнитного потока формирует в катушке ток направления, при котором данный магнитный поток катушки дает возможность избежать изменения постороннего магнитного потока.
Закон Ленца применяется для всех ситуаций индуктирования электротока в проводниках, вне зависимости от их конфигурации и метода изменения внешнего магнитного поля.
Магнитный поток
Магнитный поток – это скалярная величина, которая характеризует влияние магнитной индукции на данный металлический контур.
Магнитная индукция определяется количеством силовых линий, пересекающих 1 см2 металлического сечения.
Магнитометры, используемые для его измерения, называются теслометрами.
После прекращения движения электронов в катушке сердечник, если он сделан из мягкого железа, теряет свои магнитные свойства. Если он изготовлен из стали, он может некоторое время сохранять свои магнитные свойства.
Взаимодействие магнитов
Постоянный магнит (или магнитная стрелка) ориентирован по магнитному меридиану Земли. Конец, указывающий на север, называется северным полюсом (N), а противоположный конец – южным полюсом (S). Поднося два магнита ближе, мы замечаем, что одноименные полюса отталкиваются друг от друга, а противоположные – притягиваются (рис. 1).
Если мы разделим полюса, разрезав постоянный магнит на две части, мы обнаружим, что каждая из них также будет иметь по два полюса, то есть это будет постоянный магнит (рис. 2). Оба полюса – север и юг – неотделимы друг от друга, равны.
Магнитное поле, создаваемое Землей или постоянными магнитами, представлено, как электрическое поле, магнитными силовыми линиями. Изображение силовых линий магнитного поля магнита можно получить, положив поверх него лист бумаги, на который ровным слоем насыпают железные опилки. Попадая в магнитное поле, опилки намагничиваются: у каждого из них есть северный и южный полюс. Противоположные полюса имеют тенденцию сближаться, но этому препятствует трение опилок о бумагу. Если вы коснетесь бумаги пальцем, трение уменьшится, и опилки будут притягиваться друг к другу, образуя цепочки, которые представляют собой силовые линии магнитного поля.
На рис. 3 показано положение в поле прямого магнита из опилок и маленькие магнитные стрелки, указывающие направление силовых линий магнитного поля. Это направление принимается за направление северного полюса магнитной стрелки.
Вращающаяся катушка
Функционирование генератора электротока основывается на вращении катушки в магнитном потоке, где имеется определенное количество витков. ЭДС индуцируется в электрической цепи всегда при пересечении ее магнитным потоком, на основании формулы магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на площадь поверхности, через которую проходит магнитный поток, и косинус угла, сформированный вектором направления и перпендикулярной плоскости линии).
Согласно формуле, на Ф воздействуют изменения в ситуациях:
- при изменении магнитного потока меняется вектор направления;
- изменяется площадь, заключенная в контур;
- меняется угол.
Допускается индуцирование ЭДС при неподвижном магните или неизменном токе, а просто при вращении катушки вокруг своей оси в пределах магнитного поля. В данном случае магнитный поток изменяется при смене значения угла. Катушка в процессе вращения пересекает силовые линии магнитного потока, в итоге появляется ЭДС. При равномерном вращении возникает периодическое изменение магнитного потока. Также число силовых линий, которые пересекаются ежесекундно, становится равным значениям через равные временные промежутки.
На практике в генераторах переменного электротока катушка остается в неподвижном состоянии, а электромагнит выполняет вращения вокруг нее.
Формула магнитной индукции
где V – вектор магнитной индукции, F – максимальная сила, действующая на проводник с током, I – ток в проводнике, l – длина проводника.
Формула магнитной индукции:
Формула магнитной индукции: B = Mmax / IS
Где:
- B – индукция магнитного поля (в Тл)
- Mmax – максимальный крутящий момент магнитных сил, приложенных к раме (в Нм)
- l – длина жилы (в м)
- S – площадь рамы (в м2²)
Сила Ампера:
Сила ампер: Fa = IBL sinα
Где:
- Fa – сила ампер (в N – ньютон)
- I – сила тока (в А – амперах)
- B – индукция магнитного поля (в Тл)
- L – длина жилы (в м)
- α – угол между вектором B и одним из направлений (текущая сила, скорость и т д.; измеряется в рад или градусах.)
Сила Лоренца:
Сила Лоренца: Fl = qvB sinα
Где:
- Fl – сила Лоренца (в Н – Ньютон)
- q – заряд частицы (в Кл – кулонах)
- v – скорость (в м / с)
- B – индукция (в Тл)
- α – угол между вектором B и одним из направлений (текущая сила, скорость или другое; измеряется в рад или градусах.))
Магнитный поток:
Магнитный поток: Ф = BS cosα
Где:
- F – магнитный поток (в Вб – вебер)
- B – индукция (в Тл)
- S – площадь рамы (в м2²)
- α – угол между вектором B и одним из направлений (текущая сила, скорость или другое; измеряется в рад или градусах.))
Электродвижущая сила — Класс!ная физика
«Физика — 10 класс»
Любой источник тока характеризуется электродвижущей силой, или сокращённо ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит?
Если соединить проводником два разноимённо заряженных шарика, то заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет (рис. 15.9, а).
Сторонние силы.
Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками.
Для этого необходимо устройство (источник тока), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков.
В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис. 15.9, б). Одно лишь электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный ток в цепи.
Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами.
Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет ещё очевиднее, если обратиться к закону сохранения энергии.
Электростатическое поле потенциально. Работа этого поля при перемещении в нём заряженных частиц по замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — проводник нагревается.
Следовательно, в цепи должен быть какой-то источник энергии, поставляющий её в цепь. В нём, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы.
Работа этих сил вдоль замкнутого контура должна быть отлична от нуля.
Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают её затем проводникам электрической цепи.
Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д.
При замыкании цепи создаётся электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис. 15.9, б).
Природа сторонних сил.
Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы — это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике.
В гальваническом элементе, например в элементе Вольта, действуют химические силы.
Элемент Вольта состоит из цинкового и медного электродов, помещённых в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте.
В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.
) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток во внешней электрической цепи.
Электродвижущая сила
Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращённо ЭДС).
Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда:
Электродвижущую силу, как и напряжение, выражают в вольтах.
Разность потенциалов на клеммах батареи при разомкнутой цепи равна электродвижущей силе. ЭДС одного элемента батареи обычно 1—2 В.
Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всём контуре, а только на данном участке.
Следующая страница «Закон Ома для полной цепи» Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»
Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика
Электрический ток. Сила тока — Закон Ома для участка цепи. Сопротивление — Электрические цепи. Последовательное и параллельное соединения проводников — Примеры решения задач по теме «Закон Ома.
Последовательное и параллельное соединения проводников» — Работа и мощность постоянного тока — Электродвижущая сила — Закон Ома для полной цепи — Примеры решения задач по теме «Работа и мощность постоянного тока.
Закон Ома для полной цепи»
Джеймс Клерк Максвелл математически описал основные законы электричества и магнетизма
Джеймс Клерк Максвелл
Математическая формулировка электромагнитной индукции была разработана немецким физиком и математиком Францем Эрнстом Нейманом (1798-1895) в 1945 году. Эти открытия проложили путь к фундаментальной теоретической композиции, выполненной Джеймсом Клерком Максвеллом (1831-1879), начиная с “силовых линий Фарадея”. Однако работа Максвелла изначально вызывала недоверие у большинства физиков и игнорировалась инженерами.
Только к концу XIX века, после памятного эксперимента с электромагнитными волнами, проведенного Генрихом Герцем в 1887 году, теория Максвелла стала общепринятой и позволила обратиться как к физике, так и к технике.
Правило Ленца
Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.
Алгоритм решения задач с использованием правила Ленца:
- определить направление линий магнитной индукции внешнего магнитного поля;
- выяснить, как изменяется магнитный поток;
- определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
- по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.
Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.
ЭДС индукции
Разберемся детально, что такое понятие ЭДС индукции. При помещении в магнитное поле проводника и его движении с пересечением силовых линий поля, в проводнике появляется электродвижущая сила под названием ЭДС индукции. Также она возникает, если проводник остается в неподвижном состоянии, а магнитное поле перемещается и пересекается с проводником силовыми линиями.
Когда проводник, где происходит возникновение ЭДС, замыкается на вешнюю цепь, благодаря наличию данной ЭДС по цепи начинает протекать индукционный ток. Электромагнитная индукция предполагает явление индуктирования ЭДС в проводнике в момент его пересечения силовыми линиями магнитного поля.
Электромагнитная индукция являет собой обратный процесс трансформации механической энергии в электроток. Данное понятие и его закономерности широко используются в электротехнике, большинство электромашин основывается на данном явлении.
Электромагнитная индукция
Электромагнитная индукция – явление возникновения тока в замкнутой проводящей цепи при изменении пронизывающего ее магнитного потока.
Явление электромагнитной индукции было открыто М. Фарадеем.
Майкл Фарадей провел серию экспериментов, которые помогли раскрыть явление электромагнитной индукции.
Время опыта. Две катушки были намотаны на токонепроводящей основе: витки первой катушки располагались между витками второй. Витки одной катушки были замкнуты на гальванометр, а другая была подключена к источнику тока.
Когда ключ был закрыт и ток прошел через вторую катушку, в первой появился импульс тока. Когда ключ был открыт, также наблюдался импульс тока, но ток через гальванометр протекал в обратном направлении.
Опыт два. Первая катушка была подключена к источнику тока, а вторая – к гальванометру. В этом случае вторая катушка переместилась относительно первой. При приближении или удалении катушки регистрировался ток.
Опыт три. Катушка закрывается к гальванометру, и магнит приближается (расширяется) относительно катушки
Вот что показали эти эксперименты:
- Индукционный ток возникает только при изменении линий магнитной индукции.
- Направление тока будет разным при увеличении количества линий и при их уменьшении.
- Сила индукционного тока зависит от скорости изменения магнитного потока. Само поле может меняться или граница может двигаться в неоднородном магнитном поле.
Почему возникает индукционный ток?
Ток в цепи может существовать, когда на свободные заряды действуют внешние силы. Работа этих сил по перемещению одиночного положительного заряда по замкнутой цепи равна ЭДС. Это означает, что при изменении количества магнитных линий на граничной поверхности в ней появляется ЭДС, которая называется ЭДС индукции. |
Самоиндукция
Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.
При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.
В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.
Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.
При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.
Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.
Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.
При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.
ЭДС самоиндукции \( \varepsilon_{is} \), возникающая в катушке с индуктивностью \( L \), по закону электромагнитной индукции равна:
ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.
Николас Джозеф Каллан изобрел индукционную катушку
Ученые занимавшиеся изучением электричества подхватили идею ирландского священника Николас Джозеф Каллан (1799-1864) по изменению взаимно связанной индукции.
После посвящения в сан Каллан изучал физику в Римском университете, который окончил в 1826 году. По возвращении в Ирландию он был назначен профессором естественной философии (которую мы теперь называем физикой) в Колледже Святого Патрика в Мейнуте, недалеко от Дублина, где он основал свою лабораторию. В 1836 году Каллан построил первое устройство, способное эффективно эксплуатировать взаимную связь электричества. Его устройство состояло из двух катушек: с малым числом витков и большим из хорошо изолированных проводов, намотанных на железный сердечник. Резкое прекращение тока первой катушки вызывало высокое напряжение во второй (возможно, до нескольких десятков киловольт).
В 1854-1855 годах Каллан разработал электрохимические ячейки, которые собрал в большие батареи для питания электромагнитов. Каллан также построил ранние электрические двигатели и в 1853 году запатентовал гальванический процесс, направленный на предотвращение окисления железа. Тем не менее он не пренебрегал своим религиозным призванием, написав около 20 книг на подобные темы. Каллан построил свое устройство, потому что ему нужны были высокие напряжения в его экспериментах, трансформируя их из низкого напряжения, обеспечиваемого его батареями, но он не смог внедрить изобретения в широкую эксплуатацию.
Направление вектора МИ
Направление магнитных полей может быть указано магнитной стрелкой, помещенной в эти поля. Он будет крутиться до упора. Северный конец стрелки покажет, куда ориентировано B → орт того или иного поля.
Линии магнитной индукции
Точно так же ведет себя кадр с текущим, имея возможность перемещаться в МП без помех. Направленность вектора индукции указывает на ориентацию нормали к такой замкнутой электромагнитной цепи.
Внимание! Здесь используется правило буравчика (правый винт). Если винт вращается так же, как ток направлен в рамку, то поступательное продвижение винта совпадает с направлением положительной нормали
В некоторых случаях для поиска направления применяется правило правой руки.
Наглядное отображение линий МИ
Линия, к которой можно провести касательную, совпадающую с точкой B →, называется линией магнитной индукции (МИ). С помощью таких линий можно визуально визуализировать магнитное поле. Это замкнутые контуры, перекрывающие токи. Их плотность всегда пропорциональна значению B → в определенной точке МП.
Информация. Что касается МП прямого движения заряженных частиц, то эти линии представлены в виде концентрических окружностей. Их центр расположен на прямой линии с течением и в плоскостях, расположенных под прямым углом к нему.
Направление магнитных линий также можно определить с помощью правила подвеса.
ЭДС электрического тока
Как вы помните из прошлых статей, молекулы воды — это «электроны». Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне — это напряжение, а люди, которые тратят воду для своих нужд — это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток — это не что иное, как сила тока.
Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?
Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА! Можно назвать ее сокращенно ЭДС — Электро Движущая Сила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E.
Значит, в наших батарейках тоже есть такой «насос»? Есть, и правильней было бы его назвать «насос подачи электронов»). Но, конечно, так никто не говорит. Говорят просто — ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится «уровень воды» в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как «насос» не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.
Физический смысл магнитной индукции
Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка металлическая). В кристаллической решетке металла есть электрические заряды – электроны. Если на металл не действует магнитное воздействие, заряды (электроны) покоятся и никуда не движутся.
Васильев Дмитрий ПетровичПрофессор электротехники Санкт-Петербургского государственного политехнического университета Если металл попадает под действие переменного магнитного поля (из-за движения постоянного магнита внутри катушки – точное смещение), то заряды начинают двигаться под действием влияние этого магнитного поля.
В результате в металле образуется электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости движения одного относительно другого.
Когда металлическую катушку помещают в магнитное поле, заряженные частицы металлической решетки (в каштане) поворачиваются на определенный угол и размещаются вдоль силовых линий магнитного поля.
Магнитные поля, ориентированные в одном направлении, не нейтрализуют друг друга, а складываются в единое поле.
Основные формулы раздела «Электромагнитная индукция»
Алгоритм решения задач по теме «Электромагнитная индукция»:
1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.
2. Записать формулу:
- закона электромагнитной индукции;
- ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.
3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.
4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).
5. Решить полученную систему уравнений относительно искомой величины.
6. Решение проверить.
Электромагнитные колебания и волны →
← Магнитное поле
Электромагнитная индукция
3.1 (62.63%) 38 votes