Стабилитрон

Принцип действия

Стабилитрон был открыт американским физиком Кларенсом Мелвином Зенером, именем которого его и назвали. Электрический пробой p-n перехода может быть обусловлен туннельным пробоем (в этом случае пробой носит название Зенеровского), лавинным пробоем, пробоем в результате тепловой неустойчивости, который наступает из-за разрушительного саморазогрева токами утечки.

И инженеры конструируют эти элементы таким образом, чтобы возникновение туннельного и/или лавинного пробоя произошло задолго до того, как в них возникнет вероятность теплового пробоя.

Величина напряжения пробоя зависит от концентрации примесей и способа легирования p-n-перехода. Чем больше концентрация примесей и чем выше их градиент в переходе, тем ниже обратное напряжение, при котором образуется пробой.

  • Туннельный (зенеровский) пробой появляется в полупроводнике в тех случаях, когда напряженность электрического поля в p-n зоне равна 106 В/см. Такая высокая напряженность может возникнуть только в высоколегированных диодах. При напряжениях пробоя, находящихся в диапазоне 4,5…6,7 В, сосуществуют туннельный и лавинный эффекты, а вот при напряжении пробоя менее 4,5 В остается только туннельный эффект.
  • В стабилитронах с небольшими уровнями легирования или меньшими градиентами легирующих добавок присутствует только лавинный механизм пробоя , который появляется при напряжении пробоя примерно 4,5 В. А при напряжении выше 7,2 В остается только лавинный эффект, а туннельный полностью исчезает.

Как было сказано ранее, при прямом подключении стабилитрон при прямом включении ведет себя так же, как и обычный диод, – он пропускает ток. Различия между ними возникают при обратном подключении.

Обычный диод при обратном подключении запирает ток, а стабилитрон при достижении обратным напряжением величины, которая называется напряжением стабилизации, начинает пропускать ток в обратном направлении. Это объясняется тем, что при подаче на стабилитрон напряжения, которое превышает U ном. устройства, в полупроводнике возникает процесс, называемый пробоем. Пробой может быть туннельным, лавинным, тепловым. В результате пробоя ток, протекающий через стабилитрон, возрастает до максимального значения, ограниченного резистором. После достижения напряжения пробоя ток остается примерно постоянным в широком диапазоне обратных напряжений. Точка, в которой напряжение запускает ток, может очень точно устанавливаться в процессе производства легированием. Поэтому каждому элементу присваивают определенное напряжение пробоя (стабилизации).

Стабилитрон используется только в режиме «обратного смещения», то есть его анод подключается к «-» источника питания. Способность стабилитрона запускать обратный ток при достижении напряжения пробоя применяется для регулирования и стабилизации напряжения при изменении напряжения питания или подключенной нагрузки. Использование стабилитрона позволяет обеспечить постоянное выходное напряжение для подключенного потребителя при перепадах напряжения ИП или меняющемся токе потребителя.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 — это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-).  Если глянуть в толковый словарик, то можно толково разобрать, что же такое «стабильность». На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный — это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке

Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа  радиоэлектронной аппаратуры.  Если оно изменится в меньшую,  или даже еще хуже, в большую сторону, то аппаратура  в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать «играющее» напряжение.

Немного подробнее о стабилизации

Давайте вспомним типовую схему включения стабилитрона, которая приводилась в начале статьи. В общем случае, у нас может изменяться напряжение источника Е и ток нагрузки. При этом напряжение на нагрузке должно, в идеальном случае, оставаться неизменным. Это и есть стабилизация.

Мы можем ввести понятия коэффициента стабилизации и внутреннего сопротивления стабилизатора напряжения на стабилитроне

Коэффициент стабилизации показывает влияние изменения входного напряжения на напряжение стабилизации, а выходное сопротивление влияние изменения тока нагрузки.

Давайте рассмотрим сначала влияние изменения входного напряжения при постоянной нагрузке. Для этого вспомним, что ток через стабилитрон равен разности потребляемого от источника Е тока и тока нагрузки. Ток нагрузки у нас постоянный. Поэтому изменение входного напряжения повлияет только на ток через стабилитрон.

Для упрощения предположим, что стабилитрон идеальный, а значит его напряжение стабилизации не изменится. Поэтому

ΔIст = ΔЕ / Rб

Теперь вспомнив, что такое дифференциальное сопротивление, мы можем определить изменение напряжения стабилизации соответствующее изменению входного напряжения.

Собственно мы подтвердили ранее сделанное утверждение, что чем больше дифференциальное сопротивление, тем больше влияние изменения тока через стабилитрон, а значит, и влияние изменений входного напряжения. Тем меньше коэффициент стабилизации.

Давайте немного посчитаем для реального стабилитрона BZV55C5V1 с напряжением стабилизации 5.1 В при токе 5 мА. Пусть у нас входное напряжение будет 10 В, а ток нагрузки равен 0.5 мА. Сопротивление балластного резистора при этом будет равняться 890 Ом. Предположим, что входное напряжение увеличилось на 2 В, на сколько увеличится напряжение стабилизации (выходное напряжение)?

Типовое значение дифференциального сопротивления для BZV55C5V1 при токе 5 мА составляет 40 Ом. То есть, выходное напряжение изменится на 0.09 В. В худшем случае, если дифференциальное сопротивление будет равно 60 Ом, изменение составит уже 0.135 В. Даже в худшем случае изменение составит лишь 2.65% от номинального выходного напряжения.

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Цветовая маркировка диодов

Колба диода всегда стандартна и маркируется SOD123. На ней есть отличительное тиснение или цветная маркировочная полоска. Ее расцветка говорит о коде наличия отрицательной полярности при переходе электротока. Маркировка учитывает вольтаж, значения предельного тока, мощность и т.д. Внешний вид коробки не имеет значения и не определяет метод эксплуатации электродиода.

Отличают такие типы диодов:

  1. Семейство Д9 маркируется одним-двумя цветными кольцами района анода
  2. Диоды КД102 в районе анода обозначаются цветной точкой. Корпус прозрачный
  3. КД103 имеют дополняющий точку цветной корпус, исключая 2Д103А, обозначаемый белой точкой области анода
  4. Семейства КД226, 243 маркируются кольцом области катода. Прочих меток не предусмотрено
  5. Семейство КД247 — два цветных кольца в районе катода
  6. Диоды КД410 обозначаются точкой в районе анода

Цветовая маркировка стабилитронов по система JIS-C-7012 (Япония), Цветовая маркировка диодов, стабилитронов по системе JEDEC (США)

Цветовая маркировка диодов по европейской система PRO ELECTRON

Улучшения/ухудшения

Разумеется, стандартную схему параметрического стабилизатора на стабилитроне не раз пытались улучшить. Пожалуй, наиболее известно предложение вместо Rб использовать стабилизатор тока. Например, заменив резистор на полевой транзистор с p-n переходом включенный как двухполюсник. Вы без сомнения видели подобные схемы не один раз.

Идея здесь проста — стабилизатор тока позволяет обеспечить заданный ток, а его дифференциальное сопротивление велико. Это существенно повышает коэффициент стабилизации

Собственно, тут не важно, какой именно стабилизатор тока используется, вполне можно использовать и токовое зеркало

Но не стоит забывать, что это отнюдь не универсальный способ повышения коэффициента стабилизации. Он хорошо работает при стабильной нагрузке, но может катастрофически ухудшить ситуацию при переменной нагрузке. Поскольку стабилизатор тока в этом случае может стать дополнительным дестабилизирующим фактором. Подумайте, почему, и в каких ситуациях, это может произойти.

Как отличить стабилитрон от обычного диода

Оба эти элемента имеют схожее обозначение на схеме. На практике отличить стабилитрон от обычного диода и даже узнать его номинал, если оно не более 35 В, можно с помощью приставки к мультиметру.


Схема приставки к мультиметру

Для выполнения генератора с широтно-импульсной модуляцией используется специализированная микросхема MC34063. Чтобы обеспечить гальваническую развязку между ИП и измерительной частью схемы напряжение контролируют на первичной обмотке трансформатора. Это позволяет сделать выпрямитель на VD2. Точка стабилизации выходного напряжения устанавливается с помощью резистора R3. Напряжение на конденсаторе С4 – примерно 40 В. Стабилизатор тока А2 и проверяемый опорный диод составляют параметрический стабилизатор, а мультиметр, подключенный к выводам схемы, позволяет определить напряжение стабилитрона.

Если диод подключить в обратной полярности (анод к «-», а катод к «+»), то мультиметр для обычного диода покажет 40 В, а для стабилитрона – напряжение стабилизации.

Для определения работоспособности стабилитрона с известным номиналом используют простую схему, состоящую из источника питания и токоограничительного резистора на 300…500 Ом. В этом случае с помощью мультиметра определяют не сопротивление перехода, а напряжение. Включают элементы, как показано на схеме, и меряют напряжение на стабилитроне.

Медленно поднимают напряжение блока питания. На значении напряжения стабилизации напряжение на стабилитроне должно прекратить свой рост. Если это произошло, значит, элемент исправен. Если при последующем увеличении напряжения ИП диод не начинает стабилизировать, значит, он не исправен.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр — прямой ток, А

Uпр  — прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр — обратное напряжение, В

Uст — номинальное напряжение стабилизации, В

Iст — номинальный ток стабилизации, А

Номинальный — это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.

Imax — максимальный ток стабилитрона, А

Imin — минимальный ток стабилитрона, А

Iст, Imax, Imin — это  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное — не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Основные характеристики

В паспорте стабилизирующего диода указывают следующие параметры:

  • Номинальное напряжение стабилизацииUст . Этот параметр выбирает производитель устройства.
  • Диапазон рабочих токов . Минимальный ток – величина тока, при которой начинается процесс стабилизации. Максимальный ток – значение, выше которого устройство разрушается.
  • Максимальная мощность рассеивания . В маломощных элементах это паспортная величина. В паспортах мощных стабилитронов для расчета условий охлаждения производитель указывает: максимально допустимую температуру полупроводника и коэффициент теплового сопротивления корпуса.

Помимо параметров, указываемых в паспорте, стабилитроны характеризуются и другими величинами, среди которых:

  • Дифференциальное сопротивление . Это свойство определяет нестабильность устройства по напряжению питания и по току нагрузки. Первый недостаток устраняется запитыванием стабилизирующего диода от источника постоянного тока, а второй – включением между стабилитроном и нагрузкой буферного усилителя постоянного тока с эмиттерным повторителем.
  • Температурный коэффициент напряжения . В соответствии со стандартом эта величина равна отношению относительного изменения напряжения стабилизации к абсолютному изменению наружной температуры. В нетермостабилизированных стабилитронах при нагреве от +25°C до +125°C напряжение стабилизации сдвигается на 5-10% от первоначального значения.
  • Дрейф и шум . Эти характеристики для обычных стабилитронов не определяются. Для прецизионных устройств они являются очень важными свойствами. В обычных (непрецизионных) стабилитронах шум создают: большое количество посторонних примесей и дефекты кристаллической решетки в области p-n перехода. Способы снижения шума (если в этом есть необходимость): защитная пассивация оксидом или стеклом (примеси направляются вглубь кристалла) или перемещением вглубь кристалла самого p-n-перехода. Второй способ является более радикальным. Он востребован в диодах с низким уровнем шума со скрытой структурой.

Буквенно-цифровая маркировка диодов

На маркировке диодов обозначают дату выпуска и номер партии. Эти цифры помогают искать более новые модели. Также на маркировке указаны технические характеристики диода для сбора ответственных схем.

В прошлом веке система обозначения диодов потерпела изменения.

Цифровым обозначением выделяют признаки диодов, номера разработок, индексы классификации. Дополнительные элементы маркировки выделяют конструктивные особенности прибора.]

Буквенно-цифровая маркировка диодов по старой схеме

Первым элементом маркировки (буквой) обозначается название,  Д — диод.
Вторым элементом (номером) обозначает тип диода:

  • 1…100 — точечные германиевые
  • 101…200 — точечные кремниевые
  • 201…300 — плоскостные кремниевые
  • 801…900 — стабилитроны
  • 901…950 — варикапы
  • 1001…1100 — выпрямительные столбы

Третьим элементом обозначает разновидность прибора. Этот элемент может отсутствовать, если разновидностей диода нет.

Пример маркировки:

Буквенно-цифровая маркировка диодов по новой схеме

Первым элементом (цифра или буква) обозначает исходный полупроводниковый материал:

  • Г или 1 — германий или его соединения
  • К или 2 — кремний или его соединения
  • А или 3 — арсенид галлия
  • И или 4 — соединения индия

Вторым элементом (буква) обозначает подкласс диодов:

  • Д — диоды выпрямительные и импульсные
  • Ц — выпрямительные столбы и блоки
  • В — варикапы
  • Б — диоды Ганна
  • И — туннельные диоды
  • А — сверхвысокочастотные диоды
  • С — стабилитроны
  • Г — генераторы шума
  • Л — излучающие оптоэлектронные приборы
  • О — оптопары

Третьим элементом (цифрой) обозначает основные функциональные возможности прибора.
Для подкласса Д (диоды):

  • 1 — выпрямительные диоды с постоянным или средним значением прямого тока не более 0,3 А
  • 2 — выпрямительные диоды с постоянным или средним значением прямого тока более 0,3 А, но не свыше 10 А
  • 4 — импульсные диоды c временем восстановления обратного сопротивления более 500 нс
  • 5 — импульсные диоды c временем восстановления более 150 нс, но не свыше 500 нс
  • 6 — импульсные диоды c временем восстановления 30…150 нс
  • 7 — импульсные диоды c временем восстановления 5…30 нс
  • 8 — импульсные диоды c временем восстановления 1…5 нс
  • 9 — импульсные диоды c эффективным временем жизни неосновных носителей заряда менее 1 нс

Четвертым элемент (числом) обозначает порядковый номер разработки.
Пятым элементом (буквой) условно определяет классификацию приборов.

Новая система маркировки предусматривает обозначение частоты передачи электрического тока.

По функционированию в условиях частотности электричества диоды разделяют на приборы:

  • средней частотности;
  • высокой частотности;
  • сверхвысокой частотности.

Маркируются специальными знаками и диоды низкой, средней и высокой мощности. Катодные выводы отмечаются стрелкой со знаком «плюс», а анодные – «минус».

Площадь перехода диодов

Правый слой диода (р) обладает дырочной проводимостью, а левый (n) проводит через себя отрицательные электроны. Когда дырочки в правой стороне меняют свое положение, образуется ток. Когда пласты разной проводимости касаются друг друга, дырки перемещаются в левую часть диода, а электроны – в правую. В пограничной зоне образуется левой стороны образуется положительный заряд, а на границе правой – отрицательные.

По размеру перехода диоды подразделяются на:

  • плоскостные;
  • точечные;
  • микросплавные.

Первый тип отличается формой пластины, в которой обе зоны наделены примесной проводимостью. У вторых маленькая площадь для движения слабого тока. В третьем типе соединены монокристаллы.

Микросплавной диод

Между границами p и n областей образуется электрополе. Оно является барьером токовых носителей с участком минимальной концентрации зарядов. Когда меняется направление электрического поля снаружи, барьеры изменяются и растет величина сопротивления электротоков. В этом случае, переходы наделяются вентильными характеристиками.

Не так и сложен стабилитрон, хотя не так и прост

Сейчас выпускается много разных интегральных линейных стабилизаторов напряжения и кажется, что обычные стабилитроны отошли на второй план. А если все таки нужен стабилитрон, то можно взять TL431. Так?

Не совсем так. Стабилитроны по прежнему используют, хоть область их применения и сузилась. А TL431, при все его плюсах, иногда бывает избыточен. Да и стоит дороже, что иногда бывает важным.

Но сегодняшняя статья не об этом. Мы оставим в стороне споры о том, стоит ли использовать стабилитроны, как они работают, как устроены. Поговорим о некоторых практических аспектах их применения.

Казалось бы, зачем снова рассказывать о том, что «устарело» и «давно всем известно»? Однако, как показывает практика, известно все таки не всё и не всем. И у новичков неизменно возникает множество вопросов. Особенно у тех, кто хочет достичь понимания, а не довольствуется чтением статей вроде «как рассчитать балластный резистор для стабилитрона». Да и не устарели стабилитроны.

Давайте попробуем разобраться в некоторых особенностях применения стабилитронов. Без высшей математики и физики полупроводников, но относительно подробно.

Сразу уточню, что описываемое в статье применимо и для стабилитронов, и для стабисторов, и даже для TL431. И даже для защитных TVS диодов.

Составные стабилитроны

Составной стабилитрон – устройство, применяемой в ситуациях, когда необходимы токи и мощность большего значения, чем это допускают технические условия. В этом случае между стабилизирующим диодом и нагрузкой подсоединяют буферный усилитель постоянного тока. В схеме коллекторный переход транзистора включен параллельно стабилизирующему диоду, а эммиттерный переход – последовательно.

Схема обычного составного стабилитрона не предназначена для применения на прямом токе. Но добавление диодного моста превращает составной стабилитрон в систему двойного действия, которая может работать и при прямом, и при обратном токе. Такие стабилитроны еще называют двойными или двуханодными. Стабилитроны, которые могут работать с напряжением только одной полярности, называют несимметричными. А составные стабилитроны, дееспособные при любом направлении тока, называют симметричными.

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого .

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов.  В схемах стабилитрон включается последовательно с резистором:

где Uвх — входное напряжение, Uвых.ст.  — выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл ;-)

Итак, собираем схемку.  Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт!  Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне  5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт,  а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт  — это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Определение диода и его виды

Диод – это электронная деталь, состоящая из двух элетродов. В зависимости от полярности напряжения изменяется его проводимость. Согласно вольтамперной характеристики, диод нелинейный и несимметричный. Это отличает его от лампы накаливания и терморезистора.

Диод состоит из:

  • вакуумной стеклянной, керамической или металлической колбы
  • катода, создающую эмиссию электронов
  • анода для приема электроносителей
  • нагревательной нити
  • кристалла из германия или кремния

По строению и свойствам диоды разделяют на:

  • плоскостные
  • универсальные
  • импульсные
  • выпрямительные

Отдельная категория включает в себя светодиоды, фотодиоды и тиристоры.

Выделяют электровакуумные и газонаполненные диоды, приборы, стабилизирующие разряд и полупроводники. Последний вид наиболее распространен в электротехнике.

ТКН (температурный коэффициент напряжения)

Напряжение стабилизации, как и следовало ожидать, зависит от температуры. Для низковольтных стабилитронов ТКН обычно отрицательный. То есть, напряжение стабилизации снижается с ростом температуры. Для высоковольтных стабилитронов ТКН обычно положительный. Но у стабилитронов есть и островок стабильности, который расположен примерно вокруг напряжения стабилизации 5.5 В.

Выпускаются и термостабильные стабилитроны, которые можно использовать при работе в большом диапазоне температур.

Но нужно учитывать еще один момент, о котором не редко забывают. Стабилитрон при работе нагревается от рассеиваемой им мощности. Причем температура кристалла может быть ощутимо выше температуры корпуса. А это приводит к дополнительному изменению напряжения стабилизации.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электрошкола
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: