Схема подключения компрессора холодильника: возможные неисправности, демонтаж и замена

Неисправность компрессора: признаки

Довольно часто поломки холодильного оборудования происходят по причине неисправности компрессора. Чаще всего распознать эту проблему можно по следующим признакам:

  • на стенках холодильника намерзают заметные глыбы льда (часто такое случается при отсутствии системы No Frost);
  • при работе компрессора слышится громкий звук, но холодильник не морозит;
  • при включении холодильника наблюдается сильная вибрация;
  • компрессор не отключается;
  • холодильник перемораживает продукты.

Система No Frost

Для того, чтобы разобраться с проблемой, необходимо рассмотреть признаки поломки подробнее.

Таблица 2. Признаки поломки компрессора

Поломка Причины
Компрессор функционирует, но не морозит Причиной проблемы часто является утечка холодильного агента из-за неправильной перевозки агрегата. Кроме того, это происходит в случае неисправности ТЭНа.
Компрессор не перестает работать Такая проблема возникает по следующим причинам:утечка холодильного агента;
разгерметизация капиллярного трубопровода, из-за чего в системе произошел засор;
резинка-уплотнитель рассохлась, повысилась температура внутри агрегата, из-за чего мотор начинает работать без остановки.
Если в холодильнике имеется компрессор инверторного типа, то после набора нужной температуры, он все равно функционирует, но только минимальных оборотах.
Компрессор гудит, но не функционирует

Посторонний шум при работе компрессора часто возникает при наличии болтов, которые необходимо демонтировать после транспортировки. Тем не менее, это касается только новых устройств.
Существуют и другие причины неисправности:деформация патрубка;
поломка терморегулятора.

Компрессор холодильника включается, а затем сразу отключается Выделяют следующие причины неисправностей:поломка пускового реле, которое отвечает за запуск мотора;
обрыв внутренней намотки;
обмотка пускового реле оборвалась и компрессор перегревается.

Признаки неисправности компрессора

Если холодильник работает с нарушениями температурных режимов, часто включается или, напротив, почти не отключается, сильно морозит – это повод задуматься об исправности узла.

Обычно компрессор холодильника не запускается после нештатной работы или перегрузки. Заклинивание узла происходит, если вы отключаете устройство менее чем на минуту. По этой причине категорически не рекомендуем так делать.

Проверять узлы и искать причины нужно последовательно. Если мотор работает, не выключаясь, область диагностики сужается, но это не значит, что неисправность обязательно в этом узле. Но, даже если причина, например, в датчиках управления или реле, утечке хладона, оставлять без внимания ситуацию нельзя. В любом случае, работая на износ, этот узел рано или поздно перегреется и выйдет из строя.

Заправка холодильника фреоном

О поломке самого компрессора можно говорить, если появятся следующие симптомы:

  • Мотор гудит, пытается запуститься, но этого не происходит.
  • На полу под устройством появилась маслянистая лужа.
  • Мотор сильно греется, стучит, вибрирует, шумит на старте и при работе.

Так как блок состоит из двух устройств: двигателя и компрессора, следует различать их поломки. В общем случае, неисправности мотор-компрессора могут быть связаны с:

  • межвитковым и коротким замыканием обмоток статора (относится к двигателю);
  • замыкание обмоток на корпус (также относится к двигателю);
  • потеря производительности;
  • разгерметизация.

Определить, что именно произошло, можно по косвенным признакам. Если устройство работает без отключений, а температура в камерах высокая, возможно, дело в утечке хладона. Иногда диагностика показывает, что пропала компрессия. Это говорит о выработке устройства. Лучше его заменить на новый узел.

Если компрессор гудит при включении и не запускается, при этом никаких замыканий в обмотках нет, – скорее всего, произошло заклинивание.

Система No Frost и саморазморозка

Описанные выше холодильники имеют капельную систему разморозки. Это значит, что  холодильной камере установлен “плачущий” испаритель: в период простоя компрессора иней на нём тает естественным образом, потому как температура в камере плюсовая.

Образовавшаяся вода стекает по специальным желобам через трубочку в контейнер, расположенный над мотором или возле него. Позже работающий мотор сильно нагревается, и вода испаряется. Морозилка при такой системе самостоятельно не оттаивает никогда, к тому же иней образуется не только на стенках камеры, но и на продуктах.

Холодильники No Frost не нуждаются в разморозке, инея в их камерах, даже в морозилке, вы не увидите. Характерная особенность таких моделей – наличие вентилятора, который распределяет холодный воздух от испарителя по камерам.

В холодильниках No Frost присутствуют стандартные пуско-защитные реле, усовершенствованное термореле, а также вентилятор и нагревательные элементы для автоматической оттайки

Сам охлаждающий змеевик в таких моделях выглядит не как привычная сплошная металлическая пластина, а как автомобильный радиатор или змеевик конденсатора сзади старых холодильников.

В общей схеме работы холодильника новые элементы ведут себя следующим образом:

  • вентилятор или турбина запускается вместе с компрессором и равномерно распределяет холодный воздух по камерам;
  • когда термореле размыкает контакты, питающие двигатель в связи с достижением заданной температуры, одновременно отключается и вентилятор;
  • раз в 8 – 16 часов термореле включает нагревательный элемент. Это электрический мат или провод, нагревающий змеевик испарителя для удаления с него инея. Теплый воздух не попадает в камеры холодильника, поскольку испаритель скрыт, а вентилятор отключен;
  • когда весь иней оттаял, переключатель компенсации температуры отключает подогрев;
  • дополнительно термостат может управлять заслонкой, регулирующей подачу холодного воздуха в основную камеру по каналам.

Разморозка таких холодильников похожа на “плачущий” испаритель лишь в одном: образовавшаяся вода также стекает по каналам в емкость около мотора.

Испаритель и вентилятор могут быть скрыты в перегородке между камерами, а для регулировки температуры служат разное количество воздуховодов и подвижные заслонки в них

Описанная выше схема – наиболее примитивная. Большинство современных моделей управляются централизованно, с электронной платы.

Основной недостаток холодильников No Frost – пересыхание продуктов из-за постоянной циркуляции воздуха. Всё приходится хранить в контейнерах с плотными крышками или заворачивать в плёнку.

Оригинальное решение проблемы предлагает Electrolux в системе Frost Free. В этих агрегатах морозилка работает по системе No Frost, а в камере с плюсовой температурой установлен классический, “плачущий” испаритель. Электрическая схема в целом идентична стандартным системам “без инея”.

Варианты разборки компрессора

Существует два способа разборки: выбивание и разрезание задней шапки. Тонкостенные модели очень легко выходят из корпуса при выбивании, более старые модели выбить практически невозможно. Если все масло было предварительно слито, то можно сразу приступить к распиливанию, не выполняя пробных разрезов. Ножовкой по металлу срезаем «заднюю шапку».

Одна трубка не позволит шапке выйти из корпуса, ее достаточно перерезать ножовкой. После разборки можно увидеть весь мотор изнутри.

Видны винты, раскрутив которые, можно освободить весь механизм и вывести его из корпуса.

Без срезания концов компрессора, разобрать его невозможно, так как все компрессоры изготавливаются в виде монолитной конструкции. Обе стороны оболочки заварены, а винты, способные решить проблему располагаются под слоем толстого металла и сварными швами.

После выкручивания опорных болтов обнаруживается двигатель, редуктор, статор и ротор. Чтобы снять медные обмотки и сердечники не следует использовать болгарку и разрезать оболочку изнутри. Все держится на винтах и легко поддается разборке.

Принцип работы пускового реле

Несмотря на большое количество запатентованных продуктов от различных производителей, схемы работы холодильников и принципы действия пусковых реле практически одинаковы. Разобравшись в принципе их действия можно самостоятельно отыскать и устранить неисправность.

Схема устройства и подключение к компрессору

Электрическая схема реле имеет два входа от источника питания и три выхода на компрессор. Один вход (условно – ноль) проходит напрямую.

Другой вход (условно – фаза) внутри устройства расщепляется на два:

  • первый проходит напрямую на рабочую обмотку;
  • второй проходит через разъединяющиеся контакты на пусковую обмотку.

Если реле не имеет посадочного места, то при подключении к компрессору необходимо не ошибиться с порядком соединения контактов. Распространенные в Интернете способы определения типов обмотки с помощью измерения сопротивления не верны в общем случае, так как у некоторых двигателей сопротивление пусковой и рабочей обмотки одинаковы.

Электрическая схема пускозащитного реле может иметь незначительные модификации в зависимости от производителя. На рисунке приведена схема подключения этого устройства в холодильнике Орск

Поэтому необходимо найти документацию или разобрать компрессор холодильника для понимания расположения проходных контактов.

Также это можно сделать при наличии символьных идентификаторов возле выходов:

  • “S” – пусковая обмотка;
  • “R” – рабочая обмотка;
  • “C” – общий выход.

Реле отличаются способом крепления на раме холодильники или на компрессоре. Также они имеют свои токовые характеристики, поэтому при замене необходимо подобрать полностью идентичное устройство, а лучше – той же модели.

Замыкание контактов посредством индукционной катушки

Электромагнитное пусковое реле работает по принципу замыкания контакта для пропуска тока через пусковую обмотку. Основной действующий элемент устройства – соленоидная катушка, последовательно включенная в цепь с основной обмоткой двигателя.

В момент запуска компрессора, при статичном роторе, по соленоиду проходит большой стартовый ток. В результате этого создается магнитное поле, которое перемещает сердечник (якорь) с установленной на нем токопроводящей планкой, замыкающей контакт пусковой обмотки. Начинается разгон ротора.

При увеличении числа оборотов ротора, величина проходящего через катушку тока снижается, вследствие чего напряжение магнитного поля уменьшается. Под действием компенсирующей пружины или силы тяжести сердечник возвращается на исходное место и контакт размыкается.

На крышке реле с индукционной катушкой есть стрелка “верх”, которая указывает правильное положение устройства в пространстве. Если его разместить по-другому, то не произойдет размыкание контактов под действием силы тяжести

Мотор компрессора продолжает работать в режиме поддержания вращения ротора, пропуская ток через рабочую обмотку. Следующий раз реле сработает только после остановки ротора.

Регулирование подачи тока позистором

Выпускаемые для современных холодильников реле часто используют позистор – разновидность теплового резистора. Для этого устройства существует температурный диапазон, ниже которого оно пропускает ток с незначительным сопротивлением, а выше – сопротивление резко увеличивается и происходит размыкание цепи.

В пусковом реле позистор интегрирован в цепь, ведущую к стартовой обмотке. При комнатной температуре сопротивление этого элемента незначительное, поэтому при начале работы компрессора ток проходит беспрепятственно.

По причине наличия сопротивления позистор постепенно нагревается и по достижению определенной температуры происходит размыкание цепи. Остывает он только после прекращения подачи тока на компрессор и снова срабатывает на пропуск при повторном включении двигателя.

Позистор имеет форму низкого цилиндра, поэтому профессиональные электрики его часто называют “таблеткой”

Конденсатор компрессора холодильника

Функция пускового конденсатора холодильника

Конденсатор — это элемент, который хранит электрический заряд, а затем выпускает его. Конденсаторы используются для запуска работы электродвигателей на охлаждающей и нагревательной бытовой технике. Конденсатор — важный элемент компрессора холодильника.

Если двигатель не запускается или нестабильно работает, есть повод проверить исправность конденсатора. Следуйте указанным в статье инструкциям, только если имеете опыт обслуживания бытовых электроприборов.

Мы не гарантируем успешного результата диагностики и настоятельно рекомендуем вызвать мастера по ремонту холодильников на дом.

Необходимость замены конденсатора компрессора холодильника

Исправный пусковой конденсатор выглядит так:

Начнем диагностику с визуального осмотра. О капитальной проблеме будет говорить деформация конденсатора или следы утечки. Заметили, что конденсатор вспучило — замените его.

Если видимых признаков повреждения конденсатора нет, его нужно проверить. Расскажем о двух методах проверки — с помощью аналогового омметра и с помощью цифрового тестера.

Проверка пускового конденсатора омметром

Первый способ поможет понять, способен ли конденсатор хранить, а затем отдавать электрический заряд. Диагностика может быть выполнена с использованием аналогового омметра.

Перед работой с конденсатором вы должны снять потенциально сохраненный заряд, чтобы избежать травм. Сделайте это, замкнув отверткой с изолированной ручкой все контакты конденсатора. Будьте осторожны — не касайтесь металлической части отвертки!

Приступаем к диагностике.

Установите селектор омметра на измерение сопротивления 1000 Ом или выше. При необходимости калибровки прибора замкните щупы друг с другом и выставьте стрелку на ноль. Чтобы проверить конденсатор, прикоснитесь щупом к одной из клемм, вторым щупом коснитесь второго контакта.

Стрелка омметра должна отклониться в сторону нуля Ом и потом вернуться к бесконечному сопротивлению. Поменяйте щупы местами — вы должны увидеть такой же результат. Если стрелка не двигается или остается около нуля, то конденсатор сломан.

Чтобы проверить двойной конденсатор, проведите измерение между общим контактом и каждым из других контактов. Общий контакт обозначается буквой C, другие контакты маркируются надписями FAN, HERM или COM.

Чтобы проверить цепь FAN, один щуп присоедините к общей клемме, а второй — к разъему FAN. Стрелка, как и пре проверки одинарного конденсатора, должна отклониться в сторону нуля и вернуться к бесконечному сопротивлению. Таким же способом проверьте цепи HERM илиCOM.

Проверка при коротком замыкании конденсатора компрессора холодильника

Продолжаем пользоваться стандартным тестером. Один щуп поместите на контакт, второй — на корпус. Повторите процедуру со вторым контактом. Если прибор покажет сопротивление, налицо короткое замыкание на корпус. Замените конденсатор.

Диагностика конденсатора двигателя по параметру электрической емкости

Пусковой конденсатор холодильника обязательно имеет электрическую емкость. Емкость конденсатора — это тот «объем» энергии, который он способен накопить и пропустить. Проверить исправность элемента можно через измерение электрической емкости в микрофарадах.

Убедитесь, что ваш мультиметр оснащен функцией проверки конденсаторов путем замера мкФ.

На конденсаторах указывается емкость в мкФ — международное обозначение µF или MFD. Найдите этот показатель и выставите соответствующий диапазон на мультиметре.

Разместите щупы на контактах и нажмите кнопку, чтобы увидеть значение в мкФ. Показания должны быть приближены к данным, указанным на маркировке.

Двойные конденсаторы имеют два значения мкФ. Большая величина — показатель для контакта HERM или COM, меньшая — для FAN. Проведите диагностику каждой цепи. Показания должны быть близки к маркировке. Если на мультиметре низкое значение емкости, замените конденсатор.

Термостат (терморегулятор)

Термостат холодильника выполняет запуск и остановку компрессора холодильника. Запуск выполняется при повышении температуры до максимально заданной, например до 5 градусов. Остановка выполняется при понижении температуры до максимально заданной, например до минус 18 градусов. В простых холодильниках, с механическим управлением, используются терморегуляторы, работающие за счет расширения и сжатия газа.

В герметичной трубке (так называемая капиллярная трубка) закачан газ и один конец припаян к колбе с мембраной. При изменении объема газа, мембрана перемещается и через рычаг замыкает или размыкает контакты.

Такой термостат имеет два или три рабочих контакта. Двухконтактный управляет только пуском компрессора. Трехконтактный подает питание еще и на внутреннюю лампу освещения холодильной камеры.

В нормальном состоянии (при комнатной температуре) рабочие контакты термостата должны быть замкнуты. В этом случае ток подается на компрессор и он работает. При понижении температуры, до минимально заданной, газ охлаждается в капиллярной трубке, его объем уменьшается и мембрана перестает давить на рычаг, который замыкает контакты и они размыкаются. Ток перестает поступать на компрессор. При повышении температуры, объем газа увеличивается и мембрана замыкает контакты. Ток поступает на компрессор.

При поломке термостата его контакты всегда разомкнуты и поэтому компрессор никогда не включается. Чаще всего, в таком термостате, происходит коррозия капиллярной трубки и газ уходит из нее. Соответственно мембрана перестает отжимать рычаг.

Диагностировать поломку термостата легко. Нужно отсоединить провода и проверить, мультиметром или простой «прозвонкой» рабочие контакты. Если цепи нет, значит термостат сломан. Если на термостате три контакта, то обычно они расположены так:

  1. Средний контакт — входной провод от сетевого кабеля.

  2. Один их крайних контактов — провод на лампу освещения. Эта пара контактов (со средним) всегда замкнута если положение переключателя больше 0.

  3. Второй из крайних контактов — провод на компрессор. Эта пара контактов замкнута при высокой температуре (например при комнатной) и разомкнута при низкой (минусовой).

Один из самых распространенных термостатов, Ranco, модель из линейки K59:

Проверить работоспособность термостата можно и по-другому. Демонтировать термостат. Замерить наличие цепи на контактах при комнатной температуре. Поместить капиллярную трубку на лед и подождать. Через некоторое время должен быть слышен щелчок механизма и контакты должны разомкнуться. Если льда нет, можно конец капиллярной трубки завести в морозильную камеру (под уплотнителем двери) работающего холодильника.

Дополнительно можно проверить исправность компрессора. Если отсоединенные, от термостата, провода замкнуть между собой, а потом включить вилку в розетку, компрессор должен включиться и работать, пока не будет отключена вилка из розетки.

Термостаты могут размещаться внутри холодильной камеры или снаружи. Внутри:

Снаружи:

Место размещения терморегулятора можно определить по ручке регулировки температуры. Эта ручка одета непосредственно на терморегулятор.

Сломался компрессор в холодильнике – что делать

Замена компрессора – одна из самых сложных и дорогостоящих услуг в сервисных центрах. К тому же и сама запчасть стоит дорого. Опыт мастеров и многолетние наблюдения показывают, что, если в устройстве изношенный узел, наблюдается большая выработка, лучше его сразу заменить на новый. Но в некоторых случаях, например, если изношены прокладки, кольца или отдельные части двигателя, деталь можно отремонтировать. Окончательное решение принимает мастер, исходя из целесообразности процедуры.

Заклиненный компрессор можно попытаться расклинить. Для этого используется специализированное устройство, состоящее из 2 диодов с допустимым обратным напряжением не менее 400В и предельным прямым током в 10 Ампер. Например, КД 203 А, Д 232 А, Д 246-247.

Для устранения клина с помощью данной конструкции на обмотки двигателя подают в течение 3–5 секунд напряжение. Действие повторяют через 30 секунд. Подключать прибор можно через разъемы пусковых реле Р1, Р2 или Р3 или используя изолированные зажимы. Принцип действия конструкции основан на полезном вращающем моменте, который возникает на валу мотора при протекании тока через диоды. Ротор мотора начинает вибрировать, вибрация передается на заклиненные узлы и высвобождает их.

Электрическая принципиальная схема устройства для расклинивания компрессоров

Реле холодильника: особенности устройства

Реле пуска мотора так и называется – пускозащитное реле компрессора, холодильника.

Пусковое реле

В таких случаях, главная задача этого узла – отщелкнуть двигатель от сети. Подключение этой компоненты делается для того, чтобы не произошла перегрузка (перегорание): чтобы не загорелась обмотка холодильника, чтобы не сгорела розетка. Напряжение идет достаточно большое. Если оставить надолго подключение напрямую, в рабочем состоянии, то с большой вероятностью может загореться обмотка. Именно поэтому лучше использовать реле с холодильника именно с таким двигателем, ведь оно, как правило, рассчитано на потребляемую мотором мощность.

В современных компонентах не предусматривается отсечение, т.е. защита сети от перегоревшей обмотки.

Реле с отсутствующим отсекателем

Здесь имеется термоэлемент (позистор), этот элемент при увеличении сопротивления отрубает пусковую обмотку. Однако большинство устройств не содержит специальной вольфрамовой пружинки.

Реле: взгляд изнутри

Когда обмотка мотора замкнута, эта вольфрамовая пружинка должна нагреваться и отсекать систему от электросети. Именно поэтому желательно отсекатели, которые не содержат пружинки, вообще не ставить. Однако, использовать их на тех моторах, внутри которых установлены отсекатели, можно.

Электрические схемы распространенных холодильников «Атлант».

Сразу скажем, что представленные ниже схемы — типовые, по ним построены большинство бытовых агрегатов Стинол, Индезит, Норд и др. без системы no frost.

Принципиальная схема двухкамерного холодильника МХМ-268, МХМ-2706, МХМ-2712

Обозначения на эл. принципиальной схеме:

В — датчик-реле температуры ТАМ-133-1М-75;
S — выключатель;
E — лампа;
М — компрессор;
R — реле РТ;
К — реле РКТ-2;
С — конденсатор.

Схема работы холодильника МХМ-268:

Представленные на рисунках выше изделия имеют в своем составе один компрессор, работой которого управляет механический терморегулятор ТАМ-133-1М. С сетевой вилки (Х) через контакты 3, 4 термореле напряжение сети принимает схема компрессора холодильника, состоящая из пуско-защитного реле (К), одетого своими контактами на мотор-компрессор (М). Пуско защитный блок включает также тепловое реле (Т), отключающее пусковую обмотку двигателя после его запуска. После охлаждения до заданной температуры контакты 3-4 терморегулятора размыкаются и компрессор холодильника останавливается. Устройство и схема подключения реле холодильника и подробнее о работе РКТ можно узнать здесь, а о холодильных компрессорах Атлант здесь.

Обозначения на схеме:

A1 — блок индикации В4-01-4,8;
B1 — датчик реле температуры ТАМ-133-1М-46;
B2 — датчик реле температуры 145-2М-29;
С — конденсатор;
EL — лампа;
К — реле РКТ-6;
М — эл.двигатель компрессора;
R1 — нагреватель замораживания;
R2 — реле РТ;
S1 — выключатель освещения;
S2 — выключатель «замораживание».

На электрической принципиальной схеме:

А1 — модуль индикации;
А2 — модуль управления;
С1,С2 — конденсатор;
EL — лампа;
К1, К2 — реле РКТ-5;
М1, М2 — компрессоры;
R1 — датчик ХК;
R3 — датчик МК;
R4, R5 — реле РТ;
S1 — выключатель магнитный ВМ-4.

Схема электрическая холодильников МХМ-1801, 1804, 1805, 1806, 1817, 1818, 1833, 1834

На электрической схеме холодильника:

А2 — блок индикации В4-47-4,8;
B1 — датчик реле температуры ТАМ-133-1М-47 (ХК);
В2 — датчик реле температуры ТАМ-125-2,3 (МК);
С1,С2 — конденсатор;
EL — лампа;
К1, К2 — реле РКТ-5;
М1, М2 — компрессоры ХК и МК соответственно;
R1, R2 — реле РТ;
S1 — выключатель WP7.2.4,8;
S2 — выключатель ВК-33Н.

Обозначения на эл. принципиальной схеме:

A — блок индикации В4-0,1-4,8;
В — датчик-реле температуры 145-2М-1-1,0-4,8-9-А;
С — Конденсатор К78-25-2в-450В-4мкФ±5%;
К — Реле РКТ;
М — Электродвигатель компрессора;
P — Реле РТ;
S1 — Выключатель ВК33Н

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электрошкола
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: