Особенности параллельного и последовательного соединений светодиодов

Недостатки схемы

Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.

Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.

Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.

У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.

Осуществление питания

Наиболее важным фактором при выборе питания выступают следующие значения: токовая сила и падение напряжения. Почти все они имеют расчет на токовую силу 20 миллиампер, однако, присутствуют модели, имеющие сразу 4 кристаллика, поэтому он должен быть рассчитан на силу тока в четыре раза больше. Также диод имеет свою допускаемую величину напряжения Umax, при прямом включении и Umaxобр, при обратном. Когда подаётся более высокое напряжение, происходит пробой, после чего кристаллы больше не функционируют. Есть также минимум напряжения, которого хватит для питания Umin, его хватит для работы светодиода. Эти минимальные и максимальные пределы значений называются зоной работы. В зоне работы и должна осуществляться работа светодиода. При неправильном расчете, светодиод просто перегорит.

На каждом светодиоде указывается определённое напряжение, маркировка расположена на упаковке

Важно знать, что это указано возможное падения напряжение, а не рабочее напряжение. Это нужно знать для того, чтобы высчитывать сопротивление резистора, задача которого ограничить ток

Для каждого отдельно взятого светодиода одного номинала, требуемое напряжение может отличаться. Важно для подключения следить за током, а не напряжением.

Данные источники света в своём большинстве потребляют номинальное напряжение 2 – 3 вольт. Противопоказано подключать их прямиком к 12 вольтам, без использования ограничительного резистора. Во многих случаях для экономии используют прямую схему подключения светодиода к батарейке, без использования резистора, но такой источник света прослужит очень недолго. Для сверх ярких светодиодов резисторы не используются, так как для них сделаны драйвера, которые могут ограничивать ток. Это наиболее современный вариант светодиодов.

Напряжение питания светодиодов

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.

Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.

Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.

В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.

С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.

Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.

Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.

В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.

Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Смешанное подключение

Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:

Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.

Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.

Зачем параллельно катушке реле ставят диод? Для чего он нужен

На схемах,в которых на коллекторе или стоке транзистора в нагрузке стоит катушка реле,можно заметить,что параллельно катушке установлен диод,причем катодом к плюсу питания.При таком соединении диода,ток через него не пойдет на транзистор.Тогда для чего он нужен? Этот диод нужен для того,чтобы зашунтировать реле в момент отключения питания.В момент выключения,на выводах катушки образуется импульс ЭДС(электродвижущая сила самоиндукции катушки ),и этот импульс может достигать десятки Вольт,что может привести к выходу из строя транзистора,который не рассчитан на такое напряжение.Эти импульсы могут просто мешать работе схемы.Диод же,открываясь шунтирует реле,так как в момент импульса ЭДС,полярность на выводах катушек меняется и диод открывается,то есть на катоде будет минус ЭДС а на аноде плюс ЭДС.

Это напряжение самоиндукции катушки при выключении можно проверить с помощью неоновой лампы на 45В. При подаче питания 3.7В через кнопку на катушку реле и замыкая и размыкая кнопку,можно увидеть,как вспыхивает неоновая лампочка.

К катушке реле можно подключить щупы осциллографа и проверить напряжение этих импульсов.Оно составит пик-пик 30 В при выключении, питание на катушке 7.4В,а длительность импульса около 40мкС и меньше.Если напряжение коллектор-эмиттер выдерживает такое напряжение,то диод можно и не ставить.Диод должен быть рассчитан на напряжение не менее 100В.

Источник

Ошибки при подключении

  1. Прямое подключение к источнику питания. В данном случае светодиод моментально сгорит, поскольку отсутствует ограничивающий ток резистор.
  2. Параллельное подключение через один резистор.

    Светодиоды постепенно будут выходить из строя, поскольку рабочий ток у каждого разный.

  3. Последовательное подключение с различным током потребления.

    При такой схеме подключения есть 2 варианта: либо просто одни будут светить тусклее других, либо те, что рассчитаны на меньший ток – сгорят.

  4. Неправильно подобранный ограничивающий резистор.

    При неправильно подобранном сопротивлении через светодиоды будет проходить большой ток, в результате чего, они будут перегреваться и со временем перегорят. При большом сопротивлении они будут светить не в полную силу.

  5. Подключение к сети переменного напряжения номиналом 220В без диода или других компонентов защиты. Если при подключении с сети 220В, е

    сли не установить дополнительный диод, то на светодиоде возникнет амплитудное значение напряжения в 315В, которое моментально выведет его из строя.

Подключение светодиодов к сети 12В

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.

Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:

В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:

  • R = 1,3 кОм;
  • P = 0,125Вт.

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.

Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

  • Последовательное.
  • Параллельное.

Применение в быту

Где же можно в быту, применить такую казалось бы не практичную схему?

Самое широко известное использование подобных конструкций – это елочные новогодние гирлянды.

Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.

Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход – включить последовательно еще одну.

Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически “вечно”. Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.

Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.

Главные характеристики

Падение напряжения на мощном 1 Вт светодиоде, дающем белый свет, обычно составляет 3-3,5 вольт. Мощность набирается за счет увеличенного тока до 300-350 мА. Чтобы обеспечить правильное электропитание, светодиоды собирают в цепи с резистором или подключая их через драйвера. Задачей при сборке цепи является обеспечение стабильного напряжения и тока, который бы не превышал максимально допустимую величину.

Наибольшей популярностью пользуются мощные 1 Вт светодиоды для поверхностного монтажа. Существует их вариант выпуска «на звезде».

Это теплоотводящая пластина, выполненная в форме звезды. На ней предусмотрены площадки для контактов, поэтому работать с такой конструкцией очень удобно.

Среди световых температур предпочтение отдается дневному белому свету, мягкому белому и голубоватому оттенку, хотя на рынке есть модели, излучающие разнообразные оттенки синего и желто-красного цветов, а также зеленый свет.

Цветопередача очень высокая (боле 80%). Световой поток может достигать 100 люмен, что эквивалентно световому потоку от лампы накаливания на 15 ватт.

Современные модели на 1 ватт используют для подсветки мебели, салона в автомобилях и автобусах, для внутреннего и внешнего освещения жилья. Их вставляют в ударопрочные фонари, которые могут работать от обычных элементов питания.

Лампочки, соединенные параллельно

Параллельное соединение может быть лучевым и шлейфным:

  • первый вариант предполагает подсоединение отдельного двухжильного или трёхжильного кабеля на каждый источник света;
  • второй вариант заключается в подсоединения «фазы» и «нейтрали» от щитка к первому источнику света и далее, кроме последнего осветительного прибора, к которому подключается по два кабеля.

Параллельное соединение лампочек

Лучевая схема является более надежной, но с большим расходом кабеля, и схождением в одной точке значительного количество электрических проводов. Шлейфное подсоединение отличается тем, что при сбое на определенном участке, все расположенные дальше светильники перестают работать.

Чем отличаются параллельное и последовательное подключения

Последовательное подключение представляет собой последовательное соединение проводников в одной общей электрической цепи.

Почему оно последовательное?

Всё очень просто – проводники располагаются в электрической цепи аналогично птицам, которые сидят на проводе – один за другим. В данном случае представим, что птицы держатся за лапы – каждая птица держит своей левой лапой правую лапу ближайшей птицы. Получаем ёлочную гирлянду. Все сидят последовательно.

Кстати говоря, если свободные лапы крайних птиц прислонить к источнику питания, то выйдет фейерверк :)…

Представим, например, светодиод, который имеет + и -. Для того, чтобы объединить такие светодиоды в единую последовательную цепь, мы должны соединить ножку + первого светодиода с плюсом источника постоянного тока, а ножку – соединить с ножкой + следующего светодиода. Ножку – следующего светодиода мы подключаем также к ножке + следующего светодиода, а – подключаем к – источника постоянного тока. Вот мы и собрали простейшую последовательную цепь из трех элементов.

Параллельное подключение выглядит немного иначе.

Если вернуться к примеру с птицами, то птицы уже не сидят на проводе одна за другой, а держат друг друга лапами.

Причем, птицы так извернулись, что одна птица держит своей правой лапой, правую лапу соседней птицы, а левой лапой левую лапу этой же птицы.

Для того, чтобы зажарить таких птиц, остаётся только прислонить букет из этих соответствующих друг другу лап к полюсам источника тока.

Здесь мы берем, скажем, два светодиода, которые имеют ножки + и – соответственно, и соединяем сначала ножки светодиодов по принципу + к + и – к -.

Собранную цепь мы подключаем к источнику тока соответственно полюсам, т.е. общий плюс от двух светодиодов присоединяем к + источника тока, а общий – к минусу источника тока. В результате получили параллельную цепь.

Смешанное соединение сочетает в себе как параллельное, так и последовательные соединения. В зависимости от цели, эти комбинации могут быть различными.

На практике чаще всего используются именно смешанные схемы. Часто анализ такого соединения вызывает затруднения у студентов и школьников.

На самом же деле, тут нет ничего сложного.

Для того, чтобы разобраться во всех параметрах, нужно попросту разложить цепь на удобные фрагменты.

Так, если мы имеем ряд последовательно подключенных резисторов, которые скомпонованы вместе с параллельно соединенными резисторами, то цепь можно разбить на два обобщенных условных участка, где и определить значимый параметр.

Часто испуг вызывает появление в схеме поворотов, углов и изгибов. Человек теряется и не понимает, что от смены направления линии соединительных проводов, логика не меняется.  

Основные теоретические вопросы

Вольт-амперная характеристика (сокр. ВАХ) – это график отображающий зависимость величины тока протекающего через любой прибор от напряжения, приложенного к нему. Простая и очень ёмкая характеристика для анализа нелинейных компонентов. С её помощью можно выбрать режимы работы, и определить характеристики источника питания для прибора.

Взгляните на пример линейной и нелинейной ВАХ.

График под номером 1 на рисунке отображает линейную зависимость тока от напряжения, такую имеют все приборы резистивного характера, например:

  • Лампа накаливания;
  • обогреватель;
  • резистор (сопротивление);

График номер 2 – это ВАХ характерная для p-n переходов диодов, транзисторов и диодов.

Как сделать правильный расчет сопротивления для светодиода?

Можно выделить три основные методики: при помощи онлайн калькулятора, расчет при помощи программы, установленной на компьютер и вычисление сопротивления резистора самостоятельно при помощи формул.

Расчет онлайн

Использовать калькулятор, который можно найти в интернете на многих сайтах применяемого при расчете необходимого параметра сопротивления. В этом случае вводятся паспортные данные светодиода, количество последовательно соединенных приборов и напряжение источника питания.

По справочнику узнать следующие параметры:

  • номинальное напряжение полупроводника;
  • рабочий ток светодиода.

Ввести все необходимые данные в готовую форму.

Получить готовый номинал ограничительного сопротивления и его мощность.

Расчет с помощью калькулятора

Есть программы вычисления данных сопротивления для ограничения прямого тока светодиода, которые можно приобрести в электронных магазинах, на оптических дисках или скачать с бесплатных сайтов. Установить калькулятор на компьютер. Определить напряжение питания цепи и количество последовательно соединенных светодиодов.

  • Запустить программу.
  • Ввести исходные данные.
  • Получить сопротивление для резистора и его мощность рассеивания.

Расчет вручную

Для расчета вручную нужно вспомнить закон Ома: I = U / R . Узнать исходные данные:

  • напряжение источника питания;
  • его прямой ток;
  • прямое напряжение прибора;
  • определиться с количеством элементов в цепи и со схемой их включения.

Наиболее распространены две схемы питания светодиодов:

Расчета схемы последовательного соединения светодиода и резистора.

Сумма напряжений на светоизлучающем приборе VD 1 и на сопротивлении R 1 должно равняться напряжению источника питания — U пр. Ток, проходящий через светодиод и через резистор – равны между собой — I пр.

Исходные данные: U пр=3В, I пр=20мА, U ип-12В.

Рассчитать напряжение на R 1: U R 1 = U ип- U пр. U R 1 =12-3=9В.

Имея эти данные можно высчитать сопротивление ограничительного сопротивления в цепи: R 1= U R 1/ I пр. R 1=9/0,02=450Ом.

Сопротивление в цепи ставят для ограничения проходящего тока, при этом выделяется тепло

Важной характеристикой резистора является параметр «рассеиваемая мощность». Если ее недостаточно, то происходит перегрев элемента, подгорание и изменение параметров вплоть до разрушения, что приведет к неисправности цепи. Поэтому необходимо рассчитать и мощность рассеивания: P = I * U

Поэтому необходимо рассчитать и мощность рассеивания: P = I * U

P R 1 =0,02*9=0,18Вт

Поэтому необходимо рассчитать и мощность рассеивания: P = I * U . P R 1 =0,02*9=0,18Вт.

В результате расчетов получится, что для устойчивой работы прибора с параметрами U пр=3 В, I пр=20 мА в цепи с источником постоянного тока напряжением 12 вольт необходим резистор сопротивлением 450 Ом мощностью 0,18Вт.

Расчета для схемы последовательного соединения резистора и трех светодиодов.

Подобный расчет можно провести и для цепи с последовательно соединенными одним сопротивлением и тремя светоизлучающими элементами. Их количество может быть произвольным, но при условии, что сумма напряжений на них не менее напряжения источника питания.

Все приведенные выше расчеты справедливы и для этой схемы. Разница лишь в том, что для питания трех последовательно соединенных элементов будет необходимо не 3 вольта, а в три раза больше. Для питания трех светодиодов требуется 9 вольт, а на резисторе будет падение напряжения: U R 1= U ип — ( U VD 1+ U VD 2+ U VD 3 ). Получается 3 вольта. Ток в цепи не изменится, потому, что через три последовательно соединенных светодиода будет проходить тот же ток — I пр=20мА.

Изменятся соответственно и параметры резистора. R 1= U R 1/ I пр. R 1=3/0,02=150Ом.

Мощность тоже поменяется: P R 1 =0,02*3=0,06Вт.

Для тех, кто не очень хорошо знаком с резисторами: промышленность выпускает резисторы с определенными номиналами. Если требуется элемент с такими данными – 50Ом, 0,18Вт, а их в наличии нет, тогда можно использовать 51Ом, который есть в линейке номиналов и 0,25Вт, что выше требуемого значения и подойдет не хуже расчетного значения.

Также можно подобрать нужное значение, соединяя элементы последовательно или параллельно. При последовательном соединении значения сопротивления суммируются. При параллельном – рассчитывается по специальной формуле.

Альтернативой пассивным элементам в схеме ограничения тока можно отметить стабилизаторы тока, которые намного сложнее, но работа их более надежна и экономична.

Альтернативный тип подключения

Последовательно-параллельное соединение светодиодов – встречается в прожекторах и других мощных светильниках, работающих как от постоянного, так и от переменного напряжения.

Как видите, матрица поделена на ветки, каждая из которых имеет токоограничивающий резистор. Конкретный экземпляр предназначен для замены штатной лампы плафона в салоне автомобиля. Если один диод выйдет из строя – одна цепь перестанет гореть, а остальные цепочки продолжат свечение.

Если вы не можете определиться, как подключить светодиоды последовательно или параллельно, есть альтернативный вариант — гибридное соединение. С первого взгляда непонятно в чем смысл.

Гибридный вариант принял достоинства от последовательного и параллельного соединения светодиодов. Схема будет работать полностью, даже если один из элементов в цепи перегорит, в тоже время остальные элементы не испытают перегрузки. Напряжение на каждом сегменте будет ограничено светодиодом с наименьшим падением.

Чтобы собрать светильник правильно, а LED работали долго и не перегревались, нужно определиться как подключать светодиоды — последовательно или параллельно. Вы ознакомились с сильными и слабыми сторонами каждого из вариантов. Благодаря полученным знаниям можно выполнить ремонт LED лампы или прожектора.

Формула сопротивления при параллельном и последовательном соединении

Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением.

В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным.

Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.

Последовательное соединение проводников

В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.

Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.

Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:

  • Сила тока на всех участках цепи будет одинаковой.
  • Общее напряжение цепи составляет сумму напряжений на каждом участке.
  • Общее сопротивление включает в себя сопротивления каждого отдельного проводника.

Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.

Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R – общее сопротивление, R1 – сопротивление одного элемента, а n – количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.

Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является елочная гирлянда, когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.

Параллельное соединение проводников

В электрических сетях проводники могут соединяться различными способами: последовательно, параллельно и комбинированно. Среди них параллельное соединение это такой вариант, когда проводники в начальных и конечных точках соединяются между собой. Таким образом, начала и концы нагрузок соединяются вместе, а сами нагрузки располагаются параллельно относительно друг друга. В электрической цепи могут содержаться два, три и более проводников, соединенных параллельно.

Если рассматривать последовательное и параллельное соединение, сила тока в последнем варианте может быть исследована с помощью следующей схемы. Берутся две лампы накаливания, обладающие одинаковым сопротивлением и соединенные параллельно. Для контроля к каждой лампочке подключается собственный амперметр. Кроме того, используется еще один амперметр, контролирующий общую силу тока в цепи. Проверочная схема дополняется источником питания и ключом.

После замыкания ключа нужно контролировать показания измерительных приборов. Амперметр на лампе № 1 покажет силу тока I1, а на лампе № 2 – силу тока I2. Общий амперметр показывает значение силы тока, равное сумме токов отдельно взятых, параллельно соединенных цепей: I = I1 + I2. В отличие от последовательного соединения, при перегорании одной из лампочек, другая будет нормально функционировать. Поэтому в домашних электрических сетях используется параллельное подключение приборов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электрошкола
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: